Как работает 3д принтер - СТРОИТЕЛЬНЫЙ ПОРТАЛ
Ecom-climate.ru

СТРОИТЕЛЬНЫЙ ПОРТАЛ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как работает 3д принтер

Что такое 3D-принтер и зачем он нужен?

Аддитивные технологии долго шли в массы: институты и исследовательские центры вплотную занимались ими ещё с 80-х годов, и вот настал момент, когда вы можете прикоснуться к хайтеку и освоить 3D-печать прямо у себя дома. Для этого даже не придётся грабить банк: цены на 3D-принтеры сравнялись со средними смартфонами. Разбираемся, как это работает и какие возможности открываются для мейкеров и DIY-энтузиастов!

Зачем нужен 3D-принтер

Принтер весьма пригодится инженерам-самодельщикам. Вам больше не придётся искать универсальный корпус для проекта, а потом сверлить в нём дополнительные отверстия. 30 минут проектирования, несколько часов на печать — и у вас уже готов корпус, который идеально подходит именно под ваше устройство. Сборка из 5 шилдов никуда не влезает? Забудьте о таких проблемах.

Принтер точно поможет в ремонте штуковин по дому. У каждого в жизни случалась ситуация, когда вещь приходилось выбросить, хотя в ней сломалась всего одна пластиковая деталь. С помощью 3D-печати вы сможете легко заменить в приборах редкие пластиковые детали, которые трудно найти отдельно.

Пока вы не научились моделировать пластиковые детали самостоятельно, их можно попросту качать в интернете. Существует множество сайтов с миллионами готовых бесплатных моделей, которыми свободно обмениваются пользователи. Мы посвятили поиску моделей отдельную статью.

Какие бывают 3D-принтеры

Существует несколько основных видов 3D-принтеров, которые кардинально отличаются между собой по принципу работы.

Технология FDM (Fused Deposition Modeling)

Наиболее распространённый тип — FDM-принтеры с послойным наплавлением пластика. Они работают за счёт подвижной печатной головки с нагревательным элементом. В неё подаётся пластик в виде прутка, который плавится и в жидком виде выдавливается на печатный стол. При этом пластик обдувается вентилятором и мгновенно застывает, а головка начинает выдавливать новый слой поверх застывшего.

Технология SLA (Stereolithography Apparatus)

SLA-принтеры работают на основе стереолитографии: вместо пластика здесь используется специальная фотополимерная смола, которая застывает под воздействием ультрафиолетовых лучей. Для печати смола наполняется в ванночку, снизу которой расположен дисплей с ультрафиолетовыми пикселями. На него в течение нескольких секунд выводится рисунок нижнего слоя модели. При этом смола над дисплеем застывает в виде отображаемого рисунка и затем прилипает на специальный подвижный стол сверху. После этого стол с первым слоем приподнимается, и в смоле происходит полимеризация следующего слоя.

Технология SLS (Selective Laser Sintering)

SLS-принтеры используют технологию выборочного лазерного спекания, для которой применяется специальный пластиковый порошок. В процессе печати насыпается тонкий слой порошка, и принтер обрабатывает его лазером, чтобы слой затвердел в соответствии с моделью. Далее насыпается следующий слой порошка и сплавляется с предыдущим — и так по кругу. В конце остаётся лишь очистить готовую деталь от остатков порошка, которые затем можно использовать повторно.

Сравнение технологий

Каждый тип 3D-принтеров имеет свои преимущества и недостатки.

  • SLS-принтеры обладают большими размерами и требуют дорогого сырья. Они часто используются на высокотехнологичных производствах для штучных деталей.
  • SLA-принтеры распространены гораздо шире. Ультрафиолетовый дисплей повышает точность, однако работать с токсичной фотополимерной смолой дома затруднительно.
  • FDM-принтеры пользуются наибольшей популярностью у хоббистов. Пластиковый пруток стоит гораздо дешевле специального порошка или фотополимерной смолы. Однако, для печати сложной геометрии на таком принтере придётся позаботиться о вспомогательных поддержках. Да и скорость печати в среднем ниже, чем на других технологиях. Зато FDM-принтеры самые простые и безопасные в обслуживании.

Как подготовить печать

Процесс от зарождения идеи до выхода готовой пластиковой детали несложный — школьник справится. Мы разобрали всё по полочкам в руководстве по 3D-печати на примере принтера Flying Bear Ghost 5, а здесь покажем общий принцип.

Исходная модель

Сначала нужно создать или скачать 3D-модель будущей детали. Как правило, исходники хранятся в формате STL, который описывает полигональную структуру модели в виде множества треугольников. Но сразу отправить подобный файл на принтер не удастся: для успешной печати сперва нужно разбить детальную 3D-модель на слои, которые по зубам принтеру.

Слайсинг

Программа для нарезки моделей (слайсер) потребует от вас самую малость — ввести модель вашего принтера и задать настройки печати: толщину слоя, процент внутреннего заполнения детали, вспомогательные опоры и тому подобное. На основе этих данных слайсер автоматически подготовит специальный код для принтера — G-Code, в котором описано, как нужно двигать печатающей головкой, до какой температуры её нагревать и с какой скоростью выдавливать пластик, чтобы слой за слоем получить желаемую модель. Затем остаётся загрузить этот код в 3D-принтер и запастись терпением до конца печати.

Весь процесс подготовки модели наглядно иллюстрируется программой и снабжается интуитивными подсказками для начинающих пользователей. В общем, не так страшен слайсинг, как его малюют!

Обработка

После того, как модель готова, её можно дополнительно обработать шкуркой или химическим раствором. Это сгладит неровности между слоями, и деталь будет выглядеть прямо как заводская. В интернете немало лайфхаков, которые помогут минимизировать изъяны модели и придать ей улучшенный вид.

Расходники для печати

Свойства напечатанной вещи во многом зависят от сырья. Как мы уже говорили, 3D-принтеры FDM используют в качестве расходника пластиковые нити, и у вас есть огромный простор для экспериментов с разными видами пластика.

  • PLA-пластик хорошо поддаётся экструзии и позволяет печатать сложные формы при относительно низких рабочих температурах головки от 190 °C. Биоразлагаемость PLA играет на руку экологии, но в то же время, вещи из него получаются не слишком прочные.
  • PETG-пластик прочнее, чем PLA, но тоже хорошо подходит для принтеров с нагревом в районе 200 °C. Разновидности пластика PET хорошо знакомы вам по пакетам и пластиковым бутылкам от газировки.
  • ABS-пластик обладает более высокой прочностью по сравнению с остальными типами. Однако для качественной печати из пластика ABS вашему принтеру понадобится повышенная температура экструзии порядка 250 °C и подогреваемый до 120 °C стол, поэтому не всякая модель замахивается на его поддержку.
  • HIPS-пластик близок по температурным свойствам к ABS, но обладает низкой спекаемостью с ним и легко удаляется органическим растворителем. Благодаря этому пластик HIPS часто применяют для печати составных моделей и опор под модели из ABS.
  • Пластик Wood производится с добавлением древесной пыли. Готовые модели из него неплохо имитируют древесину не только своим видом, но и запахом.

Катушки пластика встречаются в продаже на каждом шагу — вам не составит труда выбрать подходящие расходники и комбинировать различные свойства и цвета деталей при печати.

В заключение

Домашняя 3D-печать — это проще, чем кажется. С 3D-принтером под рукой вы сможете создавать любые пластиковые детали, которые придут вам в голову: корпуса, макеты, фигурки и многое другое. Не забывайте, что в вашем распоряжении огромнейшая библиотека моделей, которые выложены в общий доступ в интернете. Сломалась насадка для пылесоса или ограничитель открывания окна? Не проблема! Имея собственный 3D-принтер, вам нужно лишь взять готовую модель из интернета, прогнать через программу-слайсер в пару кликов и отправить её на печать.

Как работают 3D принтеры по металлу. Обзор SLM и DMLS технологий. Аддитивное производство. 3D печать металлом.

3D печать металлами. Аддитивные технологии.

SLM или DMLS: в чем разница?

Всем привет, Друзья! С Вами 3DTool!

Селективное лазерное плавление (SLM) и прямое лазерное спекание металла (DMLS) — это два процесса аддитивного производства, которые принадлежат к семейству 3D-печати, с использованием метода порошкового наслоения. Две этих технологии имеют много общего: обе используют лазер для выборочного плавления (или расплавления) частиц металлического порошка, связывая их вместе и создавая модель слой за слоем. Кроме того, материалы, используемые в обоих процессах, являются металлами в гранулированной форме.

Различия между SLM и DMLS сводятся к основам процесса связывания частиц: SLM использует металлические порошки с одной температурой плавления и полностью плавит частицы, тогда как в DMLS порошок состоит из материалов с переменными точками плавления.

В частности:
SLM производит детали из одного металла, в то время как DMLS производит детали из металлических сплавов.
И SLM, и DMLS технологии используются в промышленности для создания конечных инженерных продуктов. В этой статье мы будем использовать термин «металлическая 3D печать» для обобщения 2-х технологий. Так же опишем основные механизмы процесса изготовления, которые необходимы инженерам для понимания преимуществ и недостатков этих технологий.
Существуют и другие технологические процессы для производства плотных металлических деталей, такие как электронно-лучевое плавление (EBM) и ультразвуковое аддитивное производство (UAM). Их доступность и распространение довольно ограничены, поэтому они не будут представлены в данной статье.

Как происходит 3D печать металлом SLM или DMLS.

Как работает 3D печать металлом? Основной процесс изготовления для SLM и DMLS очень похожи.

1. Камера, в которой происходит печать, сначала заполняется инертным газом (например, аргоном), чтобы минимизировать окисление металлического порошка. Затем она нагревается до оптимальной рабочей температуры.
2. Слой порошка распределяется по платформе, мощный лазер делает проходы по заданной траектории в программе, сплавляя металлические частицы вместе и создавая следующий слой.
3. Когда процесс спекания завершен, платформа перемещается вниз на 1 слой. Далее наносится еще один тонкий слой металлического порошка. Процесс повторяется до тех пор, пока печать всей модели не будет завершена.

Когда процесс печати завершен, металлический порошок уже имеет прочные связи в структуре. В отличие от процесса SLS, детали прикрепляются к платформе через опорные конструкции. Опора в 3D-печати металлом, создаётся из того же материала, что базовая деталь. Это условие необходимо для уменьшения деформаций, которые могут возникнуть из-за высоких температур обработки.
Когда камера 3D принтера охлаждается до комнатной температуры, излишки порошка удаляются вручную, например щеткой. Затем детали как правило подвергаются термообработке, пока они еще прикреплены к платформе. Делается это для снятия любых остаточных напряжений. Далее с ними можно проводить дальнейшую обработку. Снятие детали с платформы происходит по средством спиливания.

Читать еще:  Как настроить смарт часы детские

Схема работы 3D принтера по металлу.

В SLM и DMLS почти все параметры процесса устанавливаются производителем. Высота слоя, используемого в 3D-печати металлами, варьируется от 20 до 50 микрон и зависит от свойств металлического порошка (текучести, гранулометрического состава, формы и т. д.).
Базовый размер области печати на металлических 3D принтерах составляет 200 x 150 x 150 мм, но бывают и более большие размеры рабочего поля. Точность печати составляет от 50 — 100 микрон. По состоянию на 2020 год, стоимость 3D принтеров по металлу начинается от 150 000 долларов США. Например наша компания предлагает 3D принтеры по металлу от BLT.
3D принтеры по металлу, могут использоваться для мелкосерийного производства, но возможности таких систем в 3D-печати, больше напоминают возможности серийного производства на машинах FDM или SLA.
Металлический порошок в SLM и DMLS пригоден для вторичной переработки: обычно расходуется менее 5%. После каждого отпечатка неиспользованный порошок собирают и просеивают, а затем доливают свежим материалом до уровня, необходимого для следующего изготовления.
Отходы в металлической печати, представляют из себя поддержки (опорные конструкции, без которых не удастся добиться успешного результата). При слишком большом обилии поддержек на изготавливаемых деталях, соответственно будет расти и стоимость всего производства.

Адгезия между слоями.

3D печать металлом на 3D принтерах BLT

Металлические детали SLM и DMLS обладают практически изотропными механическими и термическими свойствами. Они твердые и имеют очень небольшую внутреннюю пористость (менее 0,2 % в состоянии после 3D печати и практически отсутствуют после обработки).
Металлические печатные детали имеют более высокую прочность и твердость и часто являются более гибкими, чем детали, изготовленные традиционным способом. Тем не менее, такой металл быстрее становится «уставшим».

Структура поддержки 3D модели и ориентация детали на рабочей платформе.

Опорные конструкции всегда требуются при печати металлом, из-за очень высокой температуры обработки. Они обычно строятся с использованием решетчатого узора.

Поддержки в металлической 3D печати выполняют 3 функции:

• Они делают основание для создания первого слоя детали.
• Они закрепляют деталь на платформе и предотвращают её деформацию.
• Они действуют как теплоотвод, отводя тепло от модели.

Детали часто ориентированы под углом. Однако это увеличит и объем необходимых поддержек, время печати, и в конечном итоге общие затраты.
Деформация также может быть сведена к минимуму с помощью шаблонов лазерного спекания. Эта стратегия предотвращает накопление остаточных напряжений в любом конкретном направлении и добавляет характерную текстуру поверхности детали.

Поскольку стоимость металлической печати очень большая, для прогнозирования поведения детали во время обработки часто используются программные симуляторы. Это алгоритмы оптимизации топологии в прочем используются не только для увеличения механических характеристик и создания облегченных частей, но и для того, чтобы свести к минимуму потребности в поддержках и вероятности искривления детали.

Полые секции и легкие конструкции.

В отличие от процессов плавления с полимерным порошком, таких как SLS, большие полые секции обычно не используются в металлической печати, так как поддержки будет очень сложно удалить, если вообще возможно.
Для внутренних каналов больше, чем Ø 8 мм, рекомендуется использовать алмазные или каплевидные поперечные сечения вместо круглых, так как они не требуют построения поддержек. Более подробные рекомендации по проектированию SLM и DMLS можно найти в других статьях посвященных данной тематике.

В качестве альтернативы полым секциям, детали могут быть выполнены с оболочкой и сердечниками, которые в свою очередь обрабатываются с использованием различной мощности лазера и скорости его проходов, что приводит к различным свойствам материала. Использование оболочки и сердечников очень полезно при изготовлении деталей с большим сплошным сечением, поскольку это значительно сокращает время печати и уменьшает вероятность деформации.

Использование решетчатой структуры является распространенной стратегией в 3D-печати металлом, для уменьшения веса детали. Алгоритмы оптимизации топологии также могут помочь в разработке органичных легких форм.

Расходные материалы для 3D печати металлом.

Технологии SLM и DMLS могут производить детали из широкого спектра металлов и металлических сплавов, включая алюминий, нержавеющую сталь, титан, кобальт, хром и инконель. Эти материалы обеспечивают потребности большинства промышленных применений, от аэрокосмической отрасли до медицинской. Драгоценные металлы, такие как золото, платина, палладий и серебро, также могут быть обработаны, но их применение носит незначительный характер и в основном ограничивается изготовлением ювелирных изделий.

Стоимость металлического порошка очень высока. Например, килограмм порошка из нержавеющей стали 316 стоит примерно 350-450 долларов. По этой причине минимизация объема детали и необходимость поддержек является ключом к поддержанию оптимальной стоимости производства.
Основным преимуществом металлической 3D-печати является ее совместимость с высокопрочными материалами, такими как никелевые или кобальт-хромовые супер сплавы, которые очень трудно обрабатывать традиционными методами. За счет использования металлической 3D-печати для создания детали практически чистой формы — можно достичь значительной экономии средств и времени. В последствии такая деталь может быть подвергнута обработке до очень высокого качества поверхности.

Постобработка металла.

Различные методы пост. обработки используются для улучшения механических свойств, точности и внешнего вида металлических печатных изделий.
Обязательные этапы последующей обработки включают удаление рассыпного порошка и опорных конструкций, в то время как термическая обработка (термический отжиг) обычно используется для снятия остаточных напряжений и улучшения механических свойств детали.

Обработка на станках ЧПУ может быть использована для критически важных элементов (таких как отверстия или резьбы). Пескоструйная обработка, металлизация, полировка и микрообработка могут улучшить качество поверхности и усталостную прочность металлической печатной детали.

Преимущества и недостатки металлической 3D печати.

Плюсы:

1. 3D печать с использованием металла, может быть использована для изготовления сложных деталей на заказ, с геометрией, которую традиционные методы производства не смогут обеспечить.
2. Металлические 3D печатные детали могут быть оптимизированы, чтобы увеличить их производительность при минимальном весе.
3. Металлические 3D-печатные детали имеют отличные физические свойства, 3D принтеры по металлу могут печатать большим перечнем металлов и сплавов. Включают в себя трудно обрабатываемые материалы и металлические суперсплавы.

Минусы:

1. Затраты на изготовление, связанные с металлической 3D-печатью, высоки. Стоимость расходного материала от 500$ за 1 кг.
2. Размер рабочей области в 3D принтерах по металлу ограничен.

Выводы.

А на этом у нас Все! Надеемся, статья была для Вас полезна.

Приобрести 3d-принтеры по металлу, а так же любые другие 3d-принтеры и ЧПУ станки, вы можете у нас, связавшись с нами:

• По телефону: 8(800)775-86-69

Так же, не забывайте подписываться на наш YouTube канал:

3D-принтеры: для чего нужны, как работают, почему за ними будущее

3d-принтеры все шире используются в качестве альтернативы традиционным методам промышленного производства. По своей конструкции такие принтеры напоминают офисные устройства для распечатки бумажных документов, только с добавлением третьего измерения. На них можно распечатать объекты самых разных габаритов, технических характеристик и предназначения. Процесс печати по целому ряду параметров получается намного менее затратным и более эффективным, чем традиционное производство.

В этой статье рассмотрены принципы функционирования 3d-принтеров по металлу и пластику, их сильные и слабые стороны, а также особенности создаваемой с их помощью продукции. Также перечислены наиболее востребованные технологии 3d-печати и приведены их отличительные характеристики.

Как работает?

Управление процессом печати осуществляется через компьютер, в который загружают 3d-модель будущего изделия. Именно на компьютере происходит моделирование изделий, задаются их габариты, формы и технические параметры.

Задача принтера же состоит в том, чтобы превратить эскиз из компьютера в материальный осязаемый объект. Независимо от модели устройства и конкретной технологии печати, создание изделия происходит послойно. Работа осуществляется быстрыми темпами и избавлена от негативного воздействия человеческого фактора — там, где глаз или рука мастера могли бы допустить погрешность, принтер предельно точно воспроизведет полученный от компьютера эскиз.

Принципиальная разница между печатью по металлу и пластику состоит в способе применения расходного материала — сейчас эти нюансы будут рассмотрены более детально.

По пластику

Работа 3d-принтера по пластику основывается на том, что расходные материалы плавятся до жидкой консистенции. Расходный материал, то есть пластик, подается в устройство в формате литой трубки и разогревается с помощью экструдера (этим термином специалисты обозначают печатающую головку принтера). Затем пластик расплавленной консистенции подается в нужные места через нижнюю часть экструдера.

Устройства для печати по пластику гораздо чаще применяются в домашних условиях или на предприятиях малого бизнеса, чем для печати по металлу. С их помощью удобно изготавливать сувенирную продукцию, элементы интерьера, различного рода макеты, прототипы одежды и обуви.

Эта методика ценится за высокое качество готовой продукции и обширные возможности ее кастомизации, экологичность производства и минимальное количество отходов, разнообразие материалов и предельно быстрое прототипирование.

По металлу

Во время печати головка устройства распыляет связующее вещество, то есть клей, на те места, которые указывает компьютер. Затем посредством вала на всю рабочую поверхность наносится металлическая пудра, которая застывает и затвердевает при попадании на клей. За нанесением одного слоя пудры следует нанесение очередного слоя клея и так далее.

Читать еще:  Как проверить чайник мультиметром

Большинство моделей 3d-принтеров по металлу представляют собой промышленное оборудование весом свыше тонны. Их стоимость измеряется сотнями тысяч евро. Они востребованы в первую очередь для выращивания изделий со сложной геометрией, процесс литья или механической обработки которых является крайне трудоемким и ощутимо удорожает производство.

Чаще всего 3d-принтеры по металлу задействуют для создания:

  • ювелирных изделий;
  • индивидуальных медицинских имплантатов;
  • стоматологических мостов и зубных коронок;
  • прототипов деталей серийного производства, предназначенных для тестирований и испытаний (в первую очередь в автомобильной и авиационной промышленности).

По сравнению с традиционными методами, 3d-принтеры создают металлические детали с массой на 60% меньше. Также традиционное производство оставляет чрезмерно много отходов: так, для авиационной промышленности доля отходов может доходить до 90%, а 3d-печать поможет существенно сократить этот показатель и позволит предприятию сэкономить миллионы долларов в год. Наконец, по энергопотреблению 3d-принтеры значительно экономнее, чем традиционное заводское оборудование.

Принцип работы

Все модели 3d-принтеров оснащены следующими элементами:

  • экструдером (то есть печатающей головкой);
  • рабочей поверхностью, на которой непосредственно происходит печать;
  • линейным мотором, приводящим подвижные части устройства в движение;
  • фиксаторами, контролирующими движение подвижных частей;
  • рамой;
  • картезианским роботом, передвигающимся по трем осям координат.

ВНИМАНИЕ: Это лишь базовые компоненты, на которых строится процесс 3d-печати. Разработчики принтеров постоянно внедряют в новые модели все более совершенные и функциональные детали, однако сохраняют информацию о них в статусе коммерческой тайны.

Сегодня существует свыше десятка технологий 3d-печати. В ближайшем будущем некоторые из них выйдут из обихода как устаревшие и вытесненные более эффективными аналогами. В то же время появится множество принципиально новых методик, которые сегодня неизвестны либо находятся на стадии разработки. Все актуальные на сегодняшний день методы печати объединены двумя тенденциями:

  1. С течением времени они будут становиться все более дешевыми и доступными широкому кругу потребителей.
  2. 3d-печать сейчас в большей степени характерна для промышленного применения, чем для домашнего использования — однако в будущем домашние 3d-принтеры станут настолько же распространенным явлением, как и индустриальные.

Ниже рассмотрены наиболее востребованные технологии 3d-печати, их специфика и используемые материалы.

Аббревиатура FDM расшифровывается как Fused Deposition Modeling, что означает «моделирование методом наплавления». Также эта технология известна под названием Fused Filament Fabrication (сокращенно FFF), то есть «производство методом наплавления нитей». Эти два термина являются абсолютными синонимами.

Изделия выращиваются послойно из пластиковой нити, которую предварительно расплавляют. Головка принтера плавит нить и укладывает ее в положение, задаваемое 3d-моделью в компьютере. Если готовому продукту необходима безупречно гладкая поверхность, его шлифуют. Если же допустимы незначительные неровности рельефа, образуемые за счет толщины нити, товар готов к использованию сразу после завершения печати.

С помощью FDM можно изготавливать не только дорогостоящие компоненты для высокоточного оборудования, но и товары повседневного спроса: мебель, игрушки, детали для бытовой техники. Удобнее всего по этой технологии печатать крупногабаритные объекты.

ВНИМАНИЕ: FDM/FFF является наиболее перспективным методом выращивания объемных моделей с экономической точки зрения и представляет наибольший коммерческий интерес для малого и среднего бизнеса.

Стереолитография (SLA)

В английском языке эту технологию обозначают синонимичными аббревиатурами SLA либо SL. Первая расшифровывается как stereolithography apparatus, то есть «стереолитографический аппарат», а вторая — как stereolithography, то есть «стереолитография». Этот метод основан на послойном затвердевании жидких материалов под воздействием лазерных лучей.

Вещества, чьи свойства изменяются под воздействием УФ-лучей, называются фотополимерами. Ультрафиолет делает их менее податливыми и наделяет прочностью. Характеристики вещества могут варьироваться в зависимости от длины УФ-волны и продолжительности ее воздействия.

При 3d-печати внутри емкости с фотополимером жидкой консистенции размещают сетчатую платформу для выращивания прототипа. Платформа опускается на такую глубину, чтобы оставаться покрытой одним слоем фотополимера. Определенные участки подвергаются воздействию лазера, что приводит к затвердеванию вещества — а потом платформа вновь опускается на глубину еще одного слоя.

Готовое изделие опускают в наполненную специализированным составом ванну, чтобы удалить с поверхности лишние элементы. После извлечения из ванны изделие вновь облучают светом, чтобы оно окончательно затвердело.

Стереолитографию особенно часто задействуют в стоматологии (для распечатки моделей зубов и костей пациента), в научных изысканиях (в том числе для визуализаций гидро- и газодинамических потоков внутри прозрачных моделей), при создании скульптур и ювелирных изделий.

DLP расшифровывается как Digital Light Processing и обозначает цифровую обработку светом. Воздействию света подвергают фитополимерные смолы, чтобы они затвердели. Для печати задействуют светодиодную матрицу, каждый пиксель которой является микроскопическим зеркалом.

DLP напоминает стереолитографию в том аспекте, что в результате облучения смола затвердевает. Принципиальная разница же состоит в следующем: в отличие от SLA, каждый слой не прорисовывается лучами лазера, а штампуется сразу на всю площадь поверхности. Благодаря матрице с микрозеркалами процесс удается ощутимо ускорять, не жертвуя точностью печати.

Область применения у этого метода печати такая же, как у стереолитографии. Однако готовую продукцию из фотополимеров следует беречь от воздействия света, иначе она рискует стать хрупкой и покрыться трещинами.

ВНИМАНИЕ: DLP признана одной из наиболее скоростных и высокоточных технологий 3d печати.

Аббревиатурой SLS обозначают технологию селективного лазерного спекания. На английском она расшифровывается как Selective Laser Sintering, а на русском также известна под названием выборочного лазерного спекания. Она функционирует на базе углекислотного лазера, сырьем для нее служат порошки из стекла, металлов, керамики либо полимеров. Нередко ядро гранул изготавливают из металлического порошка, а оболочку — из легкоплавких материалов.

Посредством лазера порошок разогревается почти до температуры плавления, и его гранулы спекаются воедино, образуя твердую структуру. Мощность лазера должна быть тем больше, чем выше температура спекания. Если принтер оснащен не одним, а двумя лазерами, скорость печати увеличивается.

ВНИМАНИЕ: SLS подразумевает лишь частичное плавление поверхности гранул. Полное плавление является характерной чертой другой технологии, SLM, что расшифровывается как Selective Laser Melting и означает «селективное лазерное плавление».

SLS оптимально для создания объектов со сложной геометрией, компонентов двигателей и механизмов, точных промышленных изделий для функционального тестирования.

Polyjet

Эта технология предполагает, что жидкий полимерный материал послойно отвердевает под воздействием ультрафиолета. Каждый слой распыленного материала полимеризуется под излучением УФ-лампы, и в итоге поверхность готового изделия не нуждается в дополнительной обработке.

Исходный материал не обязан быть однородным, данная технология успешно справляется с композитами. То же относится и к расцветке продукции: методика позволяет воспользоваться возможностями сложной цветопередачи с палитрой свыше 1000 оттенков.

ВНИМАНИЕ: принтеры Polyjet обычно оснащены несколькими печатающими головками. Это позволяет повысить скорость печати одного объекта либо печатать несколько объектов одновременно.

Продукция, изготовленная по такой методике, отличается стабильностью геометрических форм и гладкостью поверхностей. Ее чрезвычайно легко красить, шлифовать, склеивать, сверлить и пилить. Продукция готова к применению незамедлительно после печати.

Polyjet оптимален для производства прототипов продукции, тестовых моделей, образцов для литья в силикон.

3d-печать по металлу и пластику представляет собой эффективную и современную альтернативу традиционным методам промышленного производства. Эта методика отличается экологичностью, экономичностью и возможностью создавать высококачественные изделия с минимальными трудовыми и временными затратами. Ее область применения расширяется год от года.

Наиболее востребованными технологиями 3d-печати являются:

  1. FDM. Предусматривает послойное выращивание изделий из расплавленной пластиковой нити. Имеет большой потенциал для производства товаров повседневного потребления.
  2. SLA (стереолитография). Базируется на обработке фотополимеров лазерными лучами. Пользуется спросом в стоматологии, науке и искусстве.
  3. DLP. Цифровая обработка светом отличается от SLA тем, что слои штампуются сразу по всей своей площади, что заметно ускоряет процесс печати.
  4. SLS. При селективном лазерном спекании гранулы сплавляются воедино под воздействием лазера. Эта методика удобна для создания объектов со сложной геометрией.
  5. Polyjet. Предполагает воздействие УФ-лучей на полимеры. Оптимальна для создания объектов с безупречно гладкой поверхностью.

Год от года 3d-принтеры и расходные материалы к ним становятся все более дешевыми и доступными широкому кругу потребителей. Коммерческие перспективы этого формата производства несомненны, и уже в ближайшем будущем 3d-печать станет повсеместным явлением.

  • 16 февраля 2020
  • 4532

Как работает 3D-принтер? Просто о сложном

3D-печать — обширная и сложная тема, в которой можно разбираться бесконечно. Расскажем вкратце, как работает 3D-принтер, чем он печатает и как модель с компьютера превращается в физический объект.

Трехмерная печать становится все популярнее. Как работает 3D-принтер, какие материалы используются при печати моделей, а также некоторые практические советы рассмотрим в нашей статье.

Как работает 3D-принтер?

Начнем с технологии печати. В наши дни 3D-принтеров очень много, а соответственно, и способов создания моделей с их помощью — тоже не перечесть. Но в принципе, все принтеры в основе имеют одну из трех различных технологий.

Во-первых, существует так называемая стереолитография (SL или SLA). Внутри принтера помещается ванна, в которой находится жидкий фотополимер. Фотополимеры — это пластмассы или смолы, которые затвердевают при воздействии света. Принтеры обычно работают с акриловой, эпоксидной или виниловой смолой. По поверхности смолы движется лазерный луч, и там, где он ее касается, смола отвердевает. В фотополимерном бассейне есть платформа, которая после каждого затвердевания опускается немного вниз (глубже в ванну). Таким образом, объект печатается по рядам, как текст в обычном принтере. После полного отвердения модели она отличается высокой прочностью и химической стойкостью. Преимуществом этого метода является точность передачи: даже мелкие микрометрические структуры принтер может напечатать очень чисто. К сожалению, стереолитографические принтеры в настоящее время очень дороги.

Вторая технология работы 3D-принтера — селективное лазерное спекание (SLS). Чтобы понять, как это работает, представьте себе вертикальную трубу, в которой находится движущаяся платформа. В начале печати платформа находится наверху. Пластик, формовочный песок с пластмассовым покрытием, металлический или керамический порошок распределяются по платформе тонким слоем при помощи валика. Затем по платформе начинает перемещаться лазерный луч, нагревая определенные точки в порошке, так что они соединяются и образуют первую плоскость объекта. После этого платформа движется немного вниз, и процесс начинается снова. Таким образом, объект снова строится по слоям.

Третий способ — классический. Он называется моделированием методом наплавления (FDM). В этом процессе каждый новый слой изделия формируется из жидкого пластика, который пропускается через экструдер (программируемое устройство, придающее ему определенную форму) и после этого немедленно отверждается лазером. Затем отвержденный слой смещается вниз, экструдер придает форму новому слою, и он наплавляется сверху на предыдущий, и так далее. Такие принтеры относительно недороги и могут быть собраны самостоятельно с применением некоторых ноу-хау. Здесь точность печати получается хуже по сравнению со стереолитографией, однако для любителей это самая подходящая процедура 3D-печати.

Как создаются модели для печати?

Сначала создается 3D-модель объекта при помощи программы CAD и сохраняется в специальном формате STL. Затем файл STL загружается в программу резки для принтера, например, Cura или Slic3r. Программа резки позволяет задавать физические свойства модели, такие как плотность заполнения или использование опорных конструкций.

Программа преобразует 3D-модель в G-код. Он содержит инструкции для экструдера, по которым тот должен придавать форму каждому слою модели. Код загружается в принтер, устройство запускается, и начинается печать.

Какие материалы используются в 3D-печати?

3D-печать осуществляется при помощи различных видов пластика. Он выпускается в форме нитей, намотанных на большие катушки. Нить заряжается в принтер, который втягивает и расплавляет ее для того, чтобы пластик стал жидким, и ему можно было придавать форму.

Чаще всего в принтерах используется полилактид (PLA). Это пластик, который получают из возобновляемых источников — например, из кукурузного крахмала. Он водоотталкивающий, а также безопасный для изготовления емкостей для пищевых продуктов. Кроме того, он огнестойкий и устойчивый против УФ-излучения. Самое большое преимущество — у него при печати нет неприятного запаха.

Печать при помощи полилактида (PLA)

Очень часто используется сополимер акрилонитрил-бутадиен-стирол (ABS). Этот пластик является одной из наиболее широко используемых пластмасс в мире. Он особенно устойчив к маслам, жирам и высоким температурам. При печати он также не дает запаха. Модели из него получаются матовыми.

Еще один материал для 3D-печати — поливиниловый спирт (PVAL или PVOH). Особенностью этого пластика является его водорастворимость. Благодаря этому он удобен для печати несущих конструкций внутри модели, на которые затем наплавляется водостойкий пластик, тот же PLA. После завершения модели несущие конструкции внутри растворяются.

Для печати несущих конструкций в моделях из пластика ABS часто используется ударопрочный полистирол (HIPS). Этот пластик обладает высокой ударной вязкостью и твердостью.

К эксклюзивным методам относится печать соединениями PLA, то есть, при помощи смеси пластика PLA и частиц других веществ. Таким образом создаются модели, к примеру, из дерева или меди.

Редко, но все-таки используется поликарбонат (PC). У этого пластика очень высокая температура плавления — от 270 ° C до 300 ° C. Кроме того, этот пластик обладает высокой ударопрочностью и термостойкостью.

Для печати деталей механизмов, к примеру, зубчатых колес или винтов, которые должны выдерживать большое усилие и не ломаться, используется нейлон.

Также существует ряд пластиков с маркировкой «elastic» или «flex». Они могут быть изготовлены из разных веществ, но, как правило, в качестве основного ингредиента используются термопластичные эластомеры на основе уретана. Их объединяет одно — гибкость.

Посуда и контейнеры для пищевых продуктов печатаются с использованием безопасных нетоксичных пластика. Это либо уже упомянутый PLA, либо полипропилен (PP), который, в отличие от первого, является гибким. Существует также безопасное для пищевых продуктов сочетание PLA и ABS — PETG, которое более устойчиво к атмосферным воздействиям.

Как работает 3D принтер

Появление принтеров, позволяющих осуществлять распечатку в объёмном формате, значительно расширило возможности человека в различных сферах деятельности. Теперь можно создавать различные детали любой сложности и конфигурации в домашних условиях. При этом для работы используются полимерные материалы, которые легко можно купить в магазине или заказать через интернет.

Однако сам процесс печати представляет собой сложную последовательность действий. Для того чтобы разбираться в современных технологиях и правильно пользоваться устройством, необходимо знать его принцип работы. С этим вы можете познакомиться в нашей статье.

Что такое 3D-принтер, принцип его работы

3D принтер, если объяснять простыми словами, это устройство, создающее трёхмерные объекты путём послойной печати. Сначала формируется модель в специальной программе, затем она обрабатывается при помощи так называемого генератора G-кода — делится на горизонтальные слои и преобразуется в цифровой код. Последний становится командой для принтера, куда и как наносить материал.

Он представляет собой сложную конструкцию, в которой печатающая головка двигается только по горизонтали. В результате нанесения материала сразу в нескольких плоскостях создаётся объёмная фигура. Формируется фигура на специальном рабочем столике, обеспечивающем приклеивание полимера и его фиксацию.

При нанесении одного слоя, поверхность стола опускается на один уровень ниже — ровно на толщину 1 слоя и печатающая головка наносит следующий слой до тех пор, пока объект не будет полностью создан.

ВАЖНО! В наше время 3D печать нашла применение во всех сферах человеческой деятельности: от строительства до медицины.

Технология SLA

Для понимания следует рассмотреть несколько возможных вариантов нанесения полимерного материала для формирования изделия. Одним из таких способов является использование технологии SLA:

  1. В ёмкость наливается полимер или смола, затвердевающая при воздействии луча лазера.
  2. После включения системы лазер начинает перемещаться вдоль кареток.
  3. В определённых местах касания лазером полимер становится тверже, его структура меняется.
  4. Ёмкость после прохождения слоя опускается ниже, формируя каркас.

ВАЖНО! Так получаются чёткие детали, обладающие высокой прочностью и качеством материала, однако использование данной технологии слишком затратно.

Технология SLS

Данный способ основывается на использовании лазерного луча для послойного создания детали. В центре оборудования установлен валик с платформой. Из неё подаётся специальный полимерный материал для формирования заготовки. После нанесения тонкого слоя лазер равномерно склеивает участки полимера, формируя один уровень. Так проходит несколько циклов до появления готовой формы.

Такой вариант несколько сложнее в исполнении, но не уступает в точности. Стоимость в среднем ниже по сравнению с другими версиями.

Технология DLP

Вариант DLP печати является относительно новым изобретением в области 3D-моделирования, однако принцип практически не отличается от представленных выше методов. Стоит понимать, что в DLP печати в качестве основного инструмента выступает полоска с прикреплёнными к ней светодиодами вместо лазерной установки, как при технологии SLA. Это позволяет не только ускорить процесс, получить отличное качество, но и сэкономить на оборудовании. Представленный вариант является улучшенной версией и занимает лидирующие позиции.

Технология EBM

Ещё одним вариантом, применяемым в области объёмной печати, является разработка EBM. Технология подразумевает применение направленных лучей от излучателей (электронные пушки). За счёт высокой температуры, получаемой при нагревании потоком лучей, материал начинает плавиться, а в дальнейшем позволяет формировать изделие различной конфигурации и размеров. Температура может достигать до 1000°C, что позволяет работать даже с некоторыми металлами.

ВАЖНО! Основным преимуществом данного метода является большая скорость и высокая производительность, что крайне полезно при высоких темпах работы и больших масштабах производства.

Управление работой 3D-принтера

Чтобы обеспечивать взаимодействие всех систем, необходимо правильно управлять параметрами распечатки и настраивать технику. Для регулирования эксплуатации 3D принтера существуют различные программы и приложения. Основным способом является использование настроек программного обеспечения, установленного на компьютере. С его помощью можно регулировать следующие параметры:

  1. Температуру сопла, из которого подаётся полимерный материал для изготовления модели.
  2. Температуру рабочего стола для лучшего прилипания материала к поверхности.
  3. Скорость и интенсивность подачи полимера на рабочую поверхность. Благодаря данному параметру также улучшается нанесение слоёв.
  4. Работу электромоторов для передвижения печатающего станка.

Также существуют специальные программы, использующие кодировку для взаимодействия с контроллерами и управления рабочим процессом.

Как создаются модели для 3D-печати

Для обеспечения такого сложного процесса необходимо пользоваться специальными моделями, по которым будет строиться будущее изделие. Если вы только начинаете осваивать технологию, стоит научиться пользоваться стандартными программами и приложениями. Обычно в комплекте идёт установочный диск с базовой комплектацией и набором готовых фигур.

Можете найти приложение в интернете или создать фигуру в режиме онлайн. В данном разделе вам нужно пройти обучение, чтобы понимать основной порядок действий. После этого вы можете самостоятельно попробовать создать собственный макет будущей детали. Программа сама преобразует формат файла и отправит его на печать.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector